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Fundamental characteristics of design, calibration, and application of three–
component moment balances are investigated in great detail. These balances are
typically used to determine loads on control surfaces, canards, or other parts that
are attached to a wind tunnel model. First, three different descriptions of the
load state of a moment balance are reviewed. Then, load transformations be-
tween different load formats and the combined load diagram for two of the three
load components are discussed. An error analysis showed that it is critical to
maximize the product of the distance between the bending moment gages and
their sensitivities in order to minimize the overall error in the normal force pre-
diction. In addition, it is important to apply a sufficient number of calibration
loadings near the first bending moment gage. Then, unwanted near–linear de-
pendencies between the two bending moment gage outputs can be avoided. The
error in the bending moment prediction is also investigated that results from
the elastic deformation of the metric part of the balance under load. Finally, the
application of the Non–Iterative Method to three–component moment balance
calibration data is described in order to obtain regression models that can be
used to predict loads from measured outputs during a wind tunnel test.

Nomenclature

a = bending moment arm; not corrected for elastic deformation
amin = smallest bending moment arm of the balance
amax = largest bending moment arm of the balance
a′ = bending moment arm; corrected for elastic deformation
b = torsion moment arm
BM = bending moment at the balance moment center
BM1 = bending moment at the first bending moment gage
BM2 = bending moment at the second bending moment gage
c = distance between the second bending moment gage and the balance moment center
d = distance between the two bending moment gages
F = force caused by dead weight that is used during the manual calibration of a balance
F = load vector
F1, F2, F3 = load vector components of a three–component moment balance
NF = normal force at the balance moment center
r = radius of a circle
R = output vector
rBM1 = electrical output of the first bending moment gage
rBM2 = electrical output of the second bending moment gage
rF1, rF2, rF3 = output vector components of a three–component moment balance
rTM = output of the torsion moment gage
SBM = sensitivity of the bending moment gage
TM = torsion moment at the balance moment center
x = balance axis that is used to describe the bending moment of the balance
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y = balance axis that is used to describe the torsion moment of the balance
z = balance axis that is used to describe the normal force of the balance

δ = angular deflection in radians at a point on the balance where a dead weight is applied
∆BM = error of the bending moment if computed using an uncorrected moment arm
∆BM1 = error of the first bending moment
∆BM2 = error of the second bending moment
∆NF = error of the normal force
∆rBM1 = error of the first bending moment gage output measurement
∆rBM2 = error of the second bending moment gage output measurement
η0, η1, . . . = regression coefficients of the normal force
λ0, λ1, . . . = regression coefficients of the bending moment
µ0, µ1, . . . = regression coefficients of the torsion moment
ν0, ν1, . . . = regression coefficients of the first bending moment
ξ0, ξ1, . . . = regression coefficients of the second bending moment

I. Introduction

Three–component moment balance are often used to measure loads on a subassembly that is attached
to the fuselage or wing of a wind tunnel model. The subassembly could be, for example, a control surface, a
fin, or a canard. In some sense, a three–component moment balance is a “gaged” model part that allows for
the direct measurement of loads that act at or near its attachment point to the wind tunnel model. A wind
tunnel user is often interested in measuring the normal force, the bending moment, and the torsion moment
that acts on the balance so that the stress in the model’s subassembly can be monitored during tests.

Fundamental differences between a three–component moment balance and a six–component primary
balance exist that must be taken into consideration during design, calibration, and use of the balance. First,
the metric part of a three–component moment balance is flexible, i.e., it elastically deforms under load. It
goes from the outer edge of the balance to the first bending moment gage, i.e., the gage that is closest to the
outer edge of the balance. This definition results from the fact that the output of the first bending moment
gage would remain “constant” and become “unusable” if a hypothetical load would be applied between its
location and the balance moment center. The non–metric part of a three–component moment balance, on
the other hand, consists of (i) a flexible section with the gages and (ii) a rigid section that is used to attach
the balance to the wind tunnel model. The balance is attached to the model using the rigid section of the
non–metric part. Therefore, in order to describe balance loads in a coordinate system that can easily be
related to the body axis system of the wind tunnel model, the rigid section of the non–metric part to the
model must be used to define the balance axis system of the three–component moment balance. This choice
also allows for a precise description of the loads during calibration as only the orientation of the rigid section
of the non–metric part relative to the gravitational acceleration must be understood assuming dead weights
are used for the balance calibration. Table 1 below summarizes the most important differences between a
three–component moment balance and a six–component primary balance.

Table 1: Differences between a six–component primary balance and a three–component moment balance.

Three–Component Moment Balance Six–Component Primary Balance

Model rigid section of non–metric part metric part attaches to

Attachment attaches to the wind tunnel model the wind tunnel model

Elastic Characteristics flexible, i.e., elastically deforms rigid, i.e., does not deform

of the Metric Part when balance loads act when balance loads act

Definition of the orientation of the rigid section of the orientation of the metric part

Balance Axis System non–metric part in space defines axis system in space defines axis system

Dead weights are typically used in a balance calibration laboratory to apply calibration loads to a
three–component moment balance. This approach limits the type of loadings that can be applied to the
balance during calibration. Figure 1 below shows the typical situation during the “manual” loading of a
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three–component moment balance. The dead weight is represented by an “applied” force that is assumed
to be parallel to the gravitational acceleration. This applied force acts in the x–y plane of the balance.
Therefore, three independent calibration variables, i.e., the applied force (F ), the bending moment arm (a),
and the torsion moment arm (b), can be varied during calibration. These variables are indirectly connected
to the three loads, i.e., the normal force, the bending moment, and the torsion moment, that a wind tunnel
user is interested in.

THREE DESCRIPTIONS OF THE “LOAD STATE” OF A FIN BALANCE

APPLIED
FORCE 
(+F)

a

x

y

z BALANCE
MOMENT 
CENTER
(BMC)

b

METRIC PART PLUS FLEXIBLE SECTION OF NON-METRIC PART

Fig. 1 Manual “loading” of a three–component moment balance that is defined
by an applied force, a bending moment arm, and a torsion moment arm.

The authors observed over the years that design, calibration data quality, and load prediction accuracy
of three–component balances can vary substantially in a real–world test environment. These observations are
not surprising as three–component balances are highly customized one–of–a–kind type load sensors. Never-
theless, the authors have concluded that improvements to design, calibration, and use of three–component
moment balances are possible that (i) will reduce balance load prediction errors and (ii) make it easier to
apply these load sensors during a wind tunnel test.

An understanding of the suggested improvements requires a more detailed discussion of basic properties
of a three–component moment balance. Therefore, fundamental characteristics of this balance type are
reviewed in the next section of the paper. These discussions focus primarily on the normal force and the
bending moment as the prediction of these loads is interrelated and more complex than the prediction of
the torsion moment. Afterwards, improvements to both design and calibration of three–component moment
balances are presented. Finally, it is illustrated how the Non–Iterative Method may reliably be used to predict
the loads that act on a three–component moment balance.

II. Balance Characteristics

A. Load State Descriptions

In general, an analyst has different variable choices to uniquely describe the “load state” of a three–
component moment balance. For simplicity, the authors decided to only focus their attention on the normal
force and bending moment characteristics as the load prediction accuracy of this pair of loads is interrelated.
Therefore, the torsion moment arm and, consequently, the torsion moment itself is assumed to be zero. Then,
the “load state” of the balance can be described, for example, by using (i) the applied force and (ii) the
bending moment arm. This situation is illustrated in Fig. 2a below. It describes the “load state” from the
viewpoint of the “technician” who applies the calibration loads. The balance moment center (BMC) was
deliberately placed in Fig. 2a at the junction between “flexible” and “rigid” section of the non–metric part
of the balance. This choice makes the three axes of the balance axis system independent of the deformation
that the balance experiences under load.
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Fig. 2a Description of the “load state” of a three–component moment balance
by using the applied force (F ) and the bending moment arm (a).

Typical wind tunnel users, on the other hand, prefer a different variable choice in order to describe the
“load state” of the balance. They like to describe the “load state” in “direct–read format” using the normal
force and the bending moment that act at the BMC. This situation is illustrated in Fig. 2b below.

z

x

y

Fig. 2b Description of the “load state” of a three–component moment balance by using the
normal force (NF ) and the bending moment (BM) at the balance moment center.

A connection between the “load state” given in Fig. 2a and the one given in Fig. 2b exists that can be
described by using the following equations:

NF = F (1a)

BM = F · a (1b)

For completeness, the torsion moment must be included in the description. It is defined as the product
between the applied force (F ) and the torsion moment arm (b). Then, using the drawing given in Fig. 1, we
get the following relationship:

TM = F · b (1c)

Finally, balance engineers and some data analysts prefer to describe the “load state” of a moment
balance in “moment balance format.” Then, the first and second bending moment are used instead of the
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normal force and the bending moment for the description of two of the three load components. The approach
has the advantage that (i) the sensitivities of all gages can be defined and (ii) that each applied load is more
or less directly proportional to the electrical output of the related gage. This choice is illustrated in Fig. 2c
below.

x

y

z

Fig. 2c Description of the “load state” of a three–component moment balance by using the
bending moment at gage 1 (BM1) and the bending moment at gage 2 (BM2).

The first and second bending moments can be obtained by multiplying the applied force with the
distances to the centers of the first and second bending moment gage. Then, the two bending moments can
be computed by using the following expressions:

BM1 = F · [ a − c − d ] =⇒ proportional to rBM1 (2a)

BM2 = F · [ a − c ] =⇒ proportional to rBM2 (2b)

The torsion moment, of course, is not influenced by the new bending moment definitions. It is still
defined as the product between the applied force (F ) and the torsion moment arm (b):

TM = F · b =⇒ proportional to rTM (2c)

Load transformation equations between the normal force and the bending moment and the first and
second bending moments at the gages can easily be derived by using Eqs. (1a) and (1b) to replace the
applied load (F ) and the bending moment arm (a) in Eqs. (2a) and (2b) (see also Ref. [1] for a description of
load transformations for a six–component moment balance). Then, after some algebra, we get the following
transformation equations that relate the load pair NF & BM to the alternate load pair BM1 & BM2:

NF = ( BM2 − BM1 ) / d (3a)

BM = BM2 + ( BM2 − BM1 ) · c

d
(3b)

Important improvements related to the calibration of a three–component moment balance are presented
in a later section of the paper. These improvements can better be understood if the combined load diagrams
of the normal force and the bending moments of the balance are discussed (see Ref. [2] for more details about
combined load diagrams). This visualization of the balance load envelope is described in the next section of
the paper.

B. Combined Load Diagram
The combined load diagram of a pair of balance loads is a useful tool to better understand loadings

that are applied to the balance during calibration. Therefore, it was decided to prepare the combined load
diagram for the load pairs that are related to the two bending moment gage measurements. First, the
combined load diagram is developed in “direct–read” format. In that case, the normal force and the bending
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moment at the balance moment center describe the “load state” of the balance. Figure 3a below shows a
typical loading situation in “direct–read” format.
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Fig. 3a Description of the loads of a three–component moment balance in “direct–read” format.

Loads can only be applied on the metric part of the balance. Related load points are located in Fig. 3a
between point 1 and point 3. Now, after analyzing all possible load cases, the combined load diagram for
the normal force and bending moment is obtained (see Fig. 3b below).

8

8

8

Fig. 3b Combined load diagram of a three–component moment balance in “direct–read” format.
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Loads can only appear in the dark green regions that are shown in Fig. 3b assuming that a single dead
weight is applied at the load point during the calibration of the balance. In the next step, the combined load
diagram is developed in “moment balance” format. In that case, the first and second bending moment at the
gage locations describe the “load state” of the balance. Figure 4a below shows a typical loading situation in
“moment balance” format.
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Fig. 4a Description of the loads of a three–component moment balance in “moment balance” format.

The corresponding combined load diagram can be obtained after analyzing all typical load cases. It is
shown in Fig. 4b below.
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Fig. 4b Combined load diagram of a three–component moment balance in “moment balance” format.
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Again, loads can only appear in the dark green regions that are shown in Fig. 4b assuming that a single
dead weight is applied at the load point during the calibration of the balance. The principle diagonal of
the first and third quadrant has an important characteristic: it is the location of load points where the two
bending moments are identical. This situation can be achieved by either making the distance between the
two bending moment gages zero or by using a bending moment arm that is at “infinity”. Consequences of
these two conclusions will be discussed in more detail in the next section of the paper.

III. Design and Calibration Recommendations

A. Gage Placement and Sensitivity Selection
In the previous section it was mentioned that the first and second bending moments are identical when

the distance between the gages approaches zero. Then, the two bending moment gage outputs are no longer
independent. Consequently, the balance would only have two instead of the required three independent
electrical output measurements that are needed to predict the normal force, the bending moment, and the
torsion moment.

An estimate of the upper bound of the error of the normal force as a function of the errors of the two
bending moments can be used to illustrate this issues. A “conservative” upper bound of the error of the
normal force can be obtained by taking the absolute values of both sides of Eq. (3a). Then, we get:

conservative error estimate =⇒ |∆NF | ≤ { |∆BM2| + |∆BM1| } / d (4)

In addition, it is known that the gage sensitivity may be used to directly relate the load to the measured
output if the balance loads are given in moment balance format. Then, we get the following relationships
for the two bending moments:

BM1 ≈ 1

∂ rBM1 / ∂ BM1︸ ︷︷ ︸
gage sensitivity

· rBM1 (5a)

BM2 ≈ 1

∂ rBM2 / ∂ BM2︸ ︷︷ ︸
gage sensitivity

· rBM2 (5b)

The bending moment gages of three–component moment balances are typically selected to have identical
sensitivities. Therefore, we can make the following simplification:

SBM ≈ ∂ rBM1 / ∂ BM1 ≈ ∂ rBM2 / ∂ BM2 (6)

Then, after using Eqs. (5a) and (5b) in combination with Eq. (6), we get the following approximations
of the errors of the two bending moments:

∆BM1 ≈ ∆rBM1

SBM
(7a)

∆BM2 ≈ ∆rBM2

SBM
(7b)

Finally, after using the right–hand sides of Eqs. (7a) and (7b) to replace the bending moment errors in
Eq. (4) above, we get the following estimate of the error of the normal force:

conservative error estimate =⇒ |∆NF | ≤ |∆rBM1| + |∆rBM2|
d · SBM

(8)

The product of (i) the distance between the bending moment gages and (ii) the sensitivity of the bending
moment gages is in the denominator of the right–hand side of Eq. (8). Therefore, it is concluded that this
product must be maximized within given geometric constraints of the three–component moment balance in
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order to minimize the error in the prediction of the normal force of the balance. This important conclusion
can be summarized as follows:

BALANCE DESIGN RECOMMENDATION

The product of (i) the distance between the two bending moment gages
and (ii) the sensitivity of the bending moment gages must be maximized
in order to minimize the overall error in the normal force prediction.

The authors’ experience has shown that the distance between the bending moment gages also indirectly
influences the reliability of the regression models of the loads. Small distances may create bending moment
gage output sets with hidden linear or near–linear dependencies unless a significant number of calibration
loadings is applied in the vicinity of the first bending moment gage. This calibration load schedule design
issue is discussed in more detail in the next section of the paper.

B. Calibration Load Schedule Improvement

It was shown in Fig. 4b that either an infinitely large bending moment arm or an infinitesimally small
distance between the bending moment gages makes the two bending moments and related bending moment
gage outputs identical. This characteristic can become a serious problem if a very large bending moment
arm is used during the calibration or a balance with a very small distance between the bending moment
gages is calibrated. The ratio between the two bending moments can be used to illustrate this problem.
Then, after dividing both sides of Eq. (2a) by both sides of Eq. (2b), we get the following equation for the
ratio of the bending moments:

BM1

BM2
=

a − c − d

a − c
= 1 − 1

( a − c ) / d
(9a)

It is also reasonable to assume that the bending moment arm is significantly larger than the distance
between the second bending moment gage and the balance moment center. Then, we get the following
approximation of the ratio of the bending moments:

a � c =⇒ BM1

BM2
≈ 1 − 1

a / d
(9b)

Consequently, the ratio BM1/BM2 between the two bending moments will be close to the unwanted
value of one whenever the ratio a/d between the bending moment arm and the gage distance is large.
The same situation will be observed for the ratio rBM1/rBM2 of the electrical outputs of the bending
moment gages as rBM1 is proportional to BM1 and rBM2 is proportional to BM2. This conclusion can
be summarized as follows:

a / d � 1 =⇒ BM1

BM2
≈ 1 =⇒ BM1 = BM2 or rBM1 = rBM2 (10)

Many calibration load schedules of real–world three–component moment balances have the characteristic
that the smallest value of the ratio a/d is between four and six. These data sets make it difficult for the
regression analysis process to come up with robust regression models of the loads as the two bending moment
gage outputs “appear” to be almost linear related. This data analysis issue can easily be addressed by taking
a significant number of calibration points near the first bending moment gage. Consequently, the following
load schedule design recommendation can be made:
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CALIBRATION LOAD SCHEDULE DESIGN RECOMMENDATION

Large ratios between (i) the bending moment arm and (ii) the bending moment
gage distance generate electrical outputs of the two bending moment gages that are
almost identical. Therefore, its is absolutely critical to include a significant number of
calibration points in the load schedule that are “close” to the first bending moment gage
so that the electrical outputs of the calibration data do not “appear” to be linearly related.

It was mentioned in Table 1 above that both the metric and the gaged part of the non–metric part of
a three–component moment balance are subject to elastic deformation. Therefore, depending on the degree
of deformation, it may be necessary to apply a moment arm correction when the bending moments are
computed. This correction is discussed in the next section of the paper.

C. Bending Moment Arm Correction

The metric part and parts of the non–metric part of a three–component moment balance deform when
the balance sees a load. In other words, the bending moment arm of the resultant force is not constant.
Therefore, the authors developed a moment arm correction for the balance calibration data that takes the
deflection of the balance under load into account. Figure 5a below shows the deflection of the balance in a
loaded state.

y

z

δ

δ δ

Fig. 5a Moment arm correction for a “loaded” three–component moment balance.

The moment arm correction can be computed if the deflection angle δ is measured at the location
where a calibration load is applied. In addition, the assumption is made that the shape of the deflection
curve between the balance moment center and the load point is a circular arc. Figure 5b below shows the
connection between the basic geometric parameters that results from this assumption.
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δ

δδ

Fig. 5b Geometric relationship between uncorrected moment arm (a) and corrected moment arm (a′).

Now, knowing that the ratio between the arc (a) and the circumference of the circle (2πr) equals the
ratio between the deflection angle (δ) and 2π, and, solving the resulting equation for the radius of the circle,
we get:

a

2 π r
=

δ

2 π
=⇒ r =

a

δ
(11a)

In addition, “ABC” in Fig. 5b above is a right triangle. Then, the “sine” of the deflection angle can
be computed as a function of the corrected moment arm (a′) and the radius (r). Now, after solving the
resulting equation again for the radius, we get:

sin(δ) =
a′

r
=⇒ r =

a′

sin(δ)
(11b)

Finally, after setting the right–hand side of Eq. (11a) equal to the right–hand side of Eq. (11b) and
solving the resulting equation for the corrected moment arm (a′), we get:

a′ = a · sin(δ)

δ
(12)

The error of the computed bending moment can be obtained by taking the difference of the bending
moments for the two bending moment arm choices where BM is the uncorrected bending moment and BM ′

is the corrected bending moment. Then, using the bending moment definition given in Eq. (1b), we get:

∆BM = BM − BM ′ =

uncorrected︷ ︸︸ ︷
F · a −

corrected︷ ︸︸ ︷
F · a · sin(δ)/δ︸ ︷︷ ︸

a′

(13a)

The right–hand side of Eq. (13a) can be simplified for improved clarity. Then, we get:

∆BM = F · a · { 1 − sin(δ)/δ } = BM · { 1 − sin(δ)/δ } (13b)

Consequently, after rearranging Eq. (13b) and multiplying the result by 100 %, the relative error of the
bending moment due to deflection can be computed in percent as follows:{

∆BM

BM

}
%

= { 1 − sin(δ)/δ } · 100 % (14)
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It is useful to evaluate the error estimate defined in Eq. (14) for a family of deflection angles. The
authors decided to use the following deflection angle set: 2 deg, 5 deg, 10 deg, and 15 deg. Table 2 below
lists the result of the error estimate of the bending moment for the four chosen deflection angles.

Table 2: Bending moment error as a function of balance deflection.

δ ≡ deflection angle sin |δ|/|δ| (∆BM/BM)%

0.03491 rad ≡ 2 [deg] 0.9998 0.02 %

0.08727 rad ≡ 5 [deg] 0.9987 0.13 %

0.17453 rad ≡ 10 [deg] 0.9949 0.51 %

0.26180 rad ≡ 15 [deg] 0.9886 1.14 %

It is observed that the bending moment correction may not have to be applied if the deflection angle
is less equal 5 [deg] because the difference between the uncorrected and corrected bending moments is on
the order of 0.1 % or less. The two larger deflection angles, on the other hand, are causing differences that
are on the order of 1.0 %. Therefore, it is concluded that the bending moment correction may have to be
applied if (i) the deflection angle exceeds the threshold of 5 [deg] and (ii) the user of a three–component
moment balance has very high accuracy requirements. - The regression analysis of the balance calibration
data is discussed in more detail in the next section of the paper.

IV. Data Analysis

Different methods are used in the aerospace testing community to predict balance loads from strain–gage
outputs during a wind tunnel test. Some analysts prefer to apply the Iterative Method (see, e.g., Ref. [3] for
a description of the method). This approach fits outputs as a function of loads that were applied during a
balance calibration. Afterwards, a load iteration scheme is constructed from the regression analysis results so
that loads can be predicted from outputs during a wind tunnel test. The Non–Iterative Method may also be
used for the prediction of balance loads (see Ref. [4] for more detail). This alternate approach is much simpler
to apply than the Iterative Method. It directly fits calibration loads as a function of measured outputs. The
accuracy of both methods is similar as long as hidden linear or near–linear dependencies between terms of
the regression model of the balance calibration data are avoided. Therefore, the authors decided to select
the Non–Iterative Method for the prediction of the loads of a three–component moment balance.

The application of the Non–Iterative Method to a three–component moment balance needs to be ex-
plained in more detail (see again Ref. [4] for a detailed discussion of this approach). In this case, loads are
directly fitted as a function of the measured gage outputs. It is useful to introduce the concept of an “output
space” and a “load space” during the discussion of the Non–Iterative Method (see also Ref. [5]). The Non–
Iterative Method essentially creates a “unique” mapping between the two spaces. This idea is summarized
in Fig. 6 below.

R FrF1

rF2

rF3

F1

F2

F3

Fig. 6 Definition of the “load space” and “output space” of a three–component moment balance.
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Each point in the “output space” describes a specific “load state” of the balance. The same “load
state” is described by a point in the “load space”. In our case, points in the “output space” are described
as three–dimensional vectors. The vector components are the two bending moment gage outputs and the
torsion moment gage output. This can be described in vector format as follows:

Output V ector =⇒ R =

 rF1

rF2

rF3

 =

 rBM1
rBM2
rTM

 (15)

Two options exist to describe a point in the “load space” that depend on the chosen load format of the
balance. It is possible to describe the loads in direct–read format. Then, the load vector has the following
definition:

Load V ector (Option 1) =⇒ direct−read format =⇒ F =

F1

F2

F3

 =

 NFBM
TM

 (16a)

It is also possible to describe the load vector in moment balance format. Then, the load vector has the
following definition:

Load V ector (Option 2) =⇒ moment balance format =⇒ F =

F1

F2

F3

 =

BM1
BM2
TM

 (16b)

Regression models need to be developed so that the measured electrical outputs of the two bending
moments and the torsion moment gage can be used to predict the balance loads. The selection of the
regression model terms of the three load components depends on the calibration load schedule. In theory, a
total of ten regression model terms are supported by a typical load schedule of a three–component moment
balance as the torsion moment and the bending moments are often applied simultaneously. The ten terms
of the resulting second order Taylor Series approximation of the balance loads are listed in Table 3 below.

Table 3: Regression model terms for the loads of a three–component moment balance.

Type List of Regression Model Terms

constant (1) Intercept

linear (3) (rBM1) , (rBM2) , (rTM)

quadratic (3) (rBM1)2 , (rBM2)2 , (rTM)2

cross–product (3) (rBM1) · (rBM2) , (rBM1) · (rTM) , (rBM2) · (rTM)

First, let us assume that loads are described in direct–read format. Then, the regression models of the
normal force and the bending moment are defined by the following equations:

NF = η0 + η1 · (rBM1) + η2 · (rBM2) + η3 · (rTM)︸ ︷︷ ︸
linear terms

+ η4 · (rBM1)2 + η5 · (rBM2)2 + η6 · (rTM)2︸ ︷︷ ︸
quadratic terms

+ η7 · (rBM1) · (rBM2) + η8 · (rBM1) · (rTM) + η9 · (rBM2) · (rTM)︸ ︷︷ ︸
cross−product terms

(17a)

BM = λ0 + λ1 · (rBM1) + λ2 · (rBM2) + λ3 · (rTM)︸ ︷︷ ︸
linear terms

+ λ4 · (rBM1)2 + λ5 · (rBM2)2 + λ6 · (rTM)2︸ ︷︷ ︸
quadratic terms

+ λ7 · (rBM1) · (rBM2) + λ8 · (rBM1) · (rTM) + λ9 · (rBM2) · (rTM)︸ ︷︷ ︸
cross−product terms

(17b)
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Alternatively, loads may be expressed in moment balance format. This approach has the advantage
that the sensitivities of all balance gages are defined. In addition, troubleshooting is simplified because the
bending moment gage outputs are directly proportional to the applied first and second bending moment.
Then, the regression models of the first and second bending moment can be defined as follows:

BM1 = ν0 + ν1 · (rBM1) + ν2 · (rBM2) + ν3 · (rTM)︸ ︷︷ ︸
linear terms

+ ν4 · (rBM1)2 + ν5 · (rBM2)2 + ν6 · (rTM)2︸ ︷︷ ︸
quadratic terms

+ ν7 · (rBM1) · (rBM2) + ν8 · (rBM1) · (rTM) + ν9 · (rBM2) · (rTM)︸ ︷︷ ︸
cross−product terms

(18a)

BM2 = ξ0 + ξ1 · (rBM1) + ξ2 · (rBM2) + ξ3 · (rTM)︸ ︷︷ ︸
linear terms

+ ξ4 · (rBM1)2 + ξ5 · (rBM2)2 + ξ6 · (rTM)2︸ ︷︷ ︸
quadratic terms

+ ξ7 · (rBM1) · (rBM2) + ξ8 · (rBM1) · (rTM) + ξ9 · (rBM2) · (rTM)︸ ︷︷ ︸
cross−product terms

(18b)

Finally, the regression model of the torsion moment is defined by the following equation:

TM = µ0 + µ1 · (rBM1) + µ2 · (rBM2) + µ3 · (rTM)︸ ︷︷ ︸
linear terms

+ µ4 · (rBM1)2 + µ5 · (rBM2)2 + µ6 · (rTM)2︸ ︷︷ ︸
quadratic terms

+ µ7 · (rBM1) · (rBM2) + µ8 · (rBM1) · (rTM) + µ9 · (rBM2) · (rTM)︸ ︷︷ ︸
cross−product terms

(19)

A superficial application of the regression models defined in Eqs. (17a) to (19) must be avoided at all
cost as only a subset of the ten terms may truly be supported by the given calibration data. Therefore, it is
critical to screen the final set of regression model terms for hidden linear or massive near-linear dependencies
using a metric like the “variance inflation factor” as, for example, the outputs of the two bending moment
gages can easily “appear” linearly dependent if none or too few calibration loadings are applied near the first
bending moment gage (see Ref. [7] for a detailed discussion of the metric). In addition, the term (rTM)2 is
often not supported by a given “real–world” calibration data set as only three closely spaced moment arm
positions may be available to apply the torsion moment.

The accuracy of the balance load prediction can often be increased if a tare load iteration is performed
in combination with the application of the Non–Iterative Method. Then, all calibration loads are expressed
relative to the absolute load datum of zero load (see Ref. [6] for more details). The regression coefficients are
known after performing the least squares fit of the data. Again, the Non–Iterative Method has the advantage
that it leads to three explicit equations for the loads in either direct–read or moment balance format that
can easily be implemented and evaluated in the data system of a wind tunnel test.

V. Summary

Fundamental characteristics of design, calibration, and use of three–component moment balances were
investigated in great detail. First, basic features of this balance type were reviewed that included a discussion
of different load formats and the definition of the combined load diagram. Afterwards, balance design and
calibration recommendations were made. First, the authors recommend to maximize the product between
(i) the bending moment gage distance and (ii) the bending moment gage sensitivity in order to minimize
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the load prediction error for the normal force. A balance user needs to work closely with the manufacturer
of the balance to achieve this goal if the accuracy of the normal force prediction is critial for a given test
objective. In addition, the authors suggest to apply a significant number of calibration loads in the vicinity
of the first bending moment gage in order to avoid a situation when the two bending moment gage outputs
of the balance “appear” to be linearly related. A correction formula for the bending moment arm was also
developed that takes the deformation of the metric part of the balance under load into account. Finally,
basic elements of the use of the Non–Iterative Method for the prediction of the loads of a three–component
moment balance were presented.
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Glossary

direct–read format ≡ load format of a balance that can directly be used to compute aerodynamic co-
efficients in the body axis system; the following loads define the direct–read format for a six–component
balance: axial force, normal force, side force, pitching moment, yawing moment, and rolling moment.

moment balance format≡ load format of a balance consisting of loads that are approximately proportional
to related gage outputs; the following loads define the moment balance format for a six–component balance:
forward & aft pitching moment, forward & aft yawing moment, rolling moment, and axial force.

Iterative Method ≡ load prediction method that first fits the electrical outputs of a balance as a function
of the loads and, afterwards, constructs a load iteration scheme from the regression analysis results so that
loads can be predicted from outputs during a wind tunnel test; an analyst must make sure that (i) the terms
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of the regression models of the outputs are supported by the calibration data and that (ii) the regression
models of the outputs do not have linear or near–linear dependencies.

Non–Iterative Method ≡ load prediction method that directly fits the balance loads as a function of the
electrical outputs of a balance; an analyst must make sure that (i) the terms of the regression models of
the loads are supported by the calibration data and that (ii) the regression models of the loads do not have
linear or near–linear dependencies.

balance moment center ≡ a point on the balance that defines moment arms; the moment arms are needed
for the calculation of moments that act of a balance.

tare loads ≡ balance loads that are caused by the weight of the metric part, the calibration body, and other
calibration hardware pieces (yoke, rods, weight pans, etc.).
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